首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   3篇
  1996年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Aim We assessed population differentiation and gene flow across the range of the blue‐footed booby (Sula nebouxii) (1) to test the generality of the hypothesis that tropical seabirds exhibit higher levels of population genetic differentiation than their northern temperate counterparts, and (2) to determine if specialization to cold‐water upwelling systems increases dispersal, and thus gene flow, in blue‐footed boobies compared with other tropical sulids. Location Work was carried out on islands in the eastern tropical Pacific Ocean from Mexico to northern Peru. Methods We collected samples from 173 juvenile blue‐footed boobies from nine colonies spanning their breeding distribution and used molecular markers (540 base pairs of the mitochondrial control region and seven microsatellite loci) to estimate population genetic differentiation and gene flow. Our analyses included classic population genetic estimation of pairwise population differentiation, population growth, isolation by distance, associations between haplotypes and geographic locations, and analysis of molecular variance, as well as Bayesian analyses of gene flow and population differentiation. We compared our results with those for other tropical seabirds that are not specialized to cold‐water upwellings, including brown (Sula leucogaster), red‐footed (S. sula) and masked (S. dactylatra) boobies. Results Blue‐footed boobies exhibited weak global population differentiation at both mitochondrial and nuclear loci compared with all other tropical sulids. We found evidence of high levels of gene flow between colonies within Mexico and between colonies within the southern portion of the range, but reduced gene flow between these regions. We also found evidence for population growth, isolation by distance and weak phylogeographic structure. Main conclusions Tropical seabirds can exhibit weak genetic differentiation across large geographic distances, and blue‐footed boobies exhibit the weakest population differentiation of any tropical sulid studied thus far. The weak population genetic structure that we detected in blue‐footed boobies may be caused by increased dispersal, and subsequently increased gene flow, compared with other sulids. Increased dispersal by blue‐footed boobies may be the result of the selective pressures associated with cold‐water upwelling systems, to which blue‐footed boobies appear specialized. Consideration of foraging environment may be particularly important in future studies of marine biogeography.  相似文献   
2.
Reversed sexual dimorphism (RSD) may be related to different roles in breeding investment and/or foraging, but little information is available on foraging ecology. We studied the foraging behaviour and parental investment by male and female masked boobies, a species with RSD, by combining studies of foraging ecology using miniaturised activity and GPS data loggers of nest attendance, with an experimental study where flight costs were increased. Males attended the chick more often than females, but females provided more food to the chick than males. Males and females foraged during similar periods of the day, had similar prey types and sizes, diving depths, durations of foraging trips, foraging zones and ranges. Females spent a smaller proportion of the foraging trip sitting on the water and had higher diving rate than males, suggesting higher foraging effort by females. In females, trip duration correlated with mass at departure, suggesting a flexible investment through control by body mass. The experimental study showed that handicapped females and female partners of handicapped males lost mass compared to control birds, whereas there was no difference for males. These results indicate that the larger female is the main provisioner of the chick in the pair, and regulates breeding effort in relation to its own body mass, whereas males have a fixed investment. The different breeding investment between the sexes is associated with contrasting foraging strategies, but no clear niche differentiation was observed. The larger size of the females may be advantageous for provisioning the chick with large quantities of energy and for flexible breeding effort, while the smaller male invests in territory defence and nest guarding, a crucial task when breeding at high densities. In masked boobies, division of labour appears to be maximal during chick rearing—the most energy-demanding period—and may be related to evolution of RSD.  相似文献   
3.
4.
Parental care in long‐lived bird species involves a trade‐off between the benefits of increasing the effort expended on current offspring and the costs that this represents for future reproductive output. Under regimes of high environmental variability, long‐lived seabirds can adjust their breeding effort to buffer the negative effects of this variability on their offspring. However, the potential impacts of variation in breeding effort on offspring physiology in the short term and on longer‐term survival are poorly understood. In this study, we manipulated brood age through a cross‐fostering experiment to assess whether increasing or decreasing parental reproductive expenditure led to costs in Blue‐footed Booby Sula nebouxii chicks. Specifically, we tested the consequences of altered parental reproductive expenditure on the offspring's physiological condition (plasma metabolites, heterophil to lymphocyte ratio (H/L) and body condition index (BCI)) and survival. Offspring from broods in which parental investment was experimentally increased showed a lower BCI and lower alkaline phosphatase levels and higher H/L ratios than controls. Conversely, offspring showed the opposite pattern when reproductive expenditure was experimentally decreased. We observed no effects of manipulation of parental investment on triglyceride levels or on survival rates. Although our findings suggest that Blue‐footed Booby parents have the ability to adjust their breeding effort according to the demands of their offspring, parental effort could influence the effect of hatching order by suppressing the aggressive tendency of the senior chick.  相似文献   
5.
Philopatry over the lifetime and its relationship with reproductivesuccess were examined using longitudinal records of nest locationand reproduction of individual blue-footed boobies. Males showedshorter natal dispersal than females, and natal dispersal distanceof both sexes were unrelated to either first reproductive successor lifetime reproductive success. Throughout the early lifetime,males and females nested closer to their first breeding sitesthan to their natal sites, and comparison with a simulationof successive breeding dispersals in random directions showedthat male and female blue-footed boobies are philopatric tothe first breeding site. Therefore, throughout the early lifetime,the first breeding site seems to function as a point of referencefor breeding site use together with the previous season's site.Males and females with shorter natal dispersal distances showedstronger lifetime philopatry to their first breeding sites,suggesting stable individual variation in competitive abilityor dispersal phenotype. However, early lifetime philopatry tofirst breeding sites was unrelated to annual breeding success.Compared with simple fidelity to previous breeding sites, lifetimephilopatry to first breeding sites should result in increasedkin interactions and greater selection for kin recognition,altruism and inbreeding avoidance, as well as long-term familiaritywith neighbors.  相似文献   
6.
7.
8.
9.
Ancient DNA has revolutionized the way in which evolutionary biologists research both extinct and extant taxa, from the inference of evolutionary history to the resolution of taxonomy. Here, we present, to our knowledge, the first study to report the rediscovery of an ‘extinct’ avian taxon, the Tasman booby (Sula tasmani), using classical palaeontological data combined with ancient and modern DNA data. Contrary to earlier work, we show an overlap in size between fossil and modern birds in the North Tasman Sea (classified currently as S. tasmani and Sula dactylatra fullagari, respectively). In addition, we show that Holocene fossil birds have mitochondrial control region sequences that are identical to those found in modern birds. These results indicate that the Tasman booby is not an extinct taxon: S. dactylatra fullagari O''Brien & Davies, 1990 is therefore a junior synonym of Sula tasmani van Tets, Meredith, Fullagar & Davidson, 1988 and all North Tasman Sea boobies should be known as S. d. tasmani. In addition to reporting the rediscovery of an extinct avian taxon, our study highlights the need for researchers to be cognizant of multidisciplinary approaches to understanding taxonomy and past biodiversity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号